LSST Astrophysics/Cosmology

DOE HEP Program Review
April 27, 2005
Brookhaven National Laboratory
Morgan May

LSST Astrophysics/Cosmology

- Cosmology data → Fundamental Physics
 - Nature of Dark Energy
 - Nature of Dark Matter
- LSST new initiative arrived at after careful study of options. With SLAC, proposed DOE Camera.
- BNL role:
 Science Focal Plane Data Management
- Enabled by BNL's HEP core competencies

LSST

- •Will survey sky 100 times faster than any existing facility; 10 times faster than any proposed
- Versatility
- •10 deg² field of view
- •3 Gigapixel focal plane
- Data rate comparable to ATLAS

Sky Survey Rates

Project	E[m ² deg ²] Light collecting power	E relative	Fraction of year Available	Survey rate per year (relative)
SDSS	5	1.5	1	1.5
DES	30	9	.3	3
Pan- STARRS4	46	14	<1	<14
LSST	318	100	1	100

Ingredients of Cosmology

- CMB temperature anisotropies measure density perturbations at single redshift.
- Weak Lensing measures evolution of matter distribution with redshift, determining cosmology
- WL sensitive over the range of z where dark energy is active
- Nature of Dark Energy:
 - Vacuum energy, scalar field or modified gravity?
 - Equation of state of dark energy P=wp
 - Does w=-1? Is w redshift dependent?

Weak Lensing

- •Correlated change in ellipticity of background galaxies induced by foreground masses
- •Above galaxy cluster reconstructed by WL: DLS data studied by BNL for filter optimization
- •WL detects matter- dark+baryonic through gravitation, independent of baryonic physics

Galaxy Clusters

Galaxy Ellipticities→Shear Field→ Mass Maps→ Galaxy Clusters

- Galaxy clusters are the most massive objects in universe, stand out in shear field
- Evolve from highest peaks in the initial density perturbations
- Tracer of growth of structure
- Enhanced correlation (bias)

Dark Energy Properties: w,wa

PHYSICAL REVIEW D 70, 123008 (2004)

Constraining the evolution of dark energy with a combination of galaxy cluster observables

Sheng Wang, ^{1,2} Justin Khoury, ³ Zoltán Haiman, ⁴ and Morgan May ¹

¹Brookhaven National Laboratory, Upton, New York 11973-5000, USA

²Department of Physics, Columbia University, New York, New York 10027, USA

³Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, New York, New York 10027, USA

⁴Department of Astronomy, Columbia University, New York, New York 10027, USA

(Received 14 June 2004; published 17 December 2004)

LSST's 200,000 galaxy clusters will tightly constrain dark energy equation of state P=wp

Neutrino Dark matter: m_v

"Weighing neutrinos with galaxy cluster surveys" BNL/Columbia/U. Chicago (Wayne Hu)

Submitted for publication

- Cosmology sensitive to Σm_y breaking the degeneracy of ν oscillation measurements
- v become non-relativistic
 →cluster with CDM
- T_v ≈ .2 eV at CMB decoupling
 → CMB sensitive to m_v > .2 eV
- LSST+Planck sensitive to m_v > .03 eV < m_v atmospheric

Focal Plane

- BNL-Harvard-CfA team
- No existing sensor meets all specifications
- CCD and hybrid-PIN-CMOS sensors being developed
- Sensor/electronics design to meet science requirements
- Developed strawman design as starting point for negotiations with vendors
- V. Radeka will discuss tomorrow

Focal Plane Requirements

- 3 Gpixels an order of magnitude more than present largest arrays; 200 4K by 4K CCDs, 10µm pitch, 64 cm diameter focal plane
- Good near-IR response at 1000 nm; PSF < .2 arcseconds → 100 µm thick sensors
- Fast readout, 2 orders of magnitude higher than previous → segmentation (64000 readout ports) → high degree of integration for front end electronics
- Metrology 5 µm tolerances for sensor flatness and alignment.

Data Management

- BNL/Harvard/Princeton/U Wash Team R&D
 - Pixel level algorithms and prototype photometric pipeline: (BNL detailed knowledge of sensors)
 - Benchmarking pipelines on parallel processors
 - Run image processing analysis on precursor surveys
- Regional LSST computing and analysis center
 - Synergy with BNL ATLAS/RHIC Computing

Future

- LSST collaboration preparing proposal for DOE to be submitted early summer
- 3 years R&D, followed by 4 years construction
- Increase DOE HEP university participation
- Hope for funding that will enable schedule
- Key role for modest size BNL group leveraged by:
 - BNL HEP core competencies
 - Lab infrastructure
 - Collaboration

